Section 2.3 Subtraction with Negative Numbers

1. Definition of Subtraction: If a and b are any two numbers, then it is true that:

$$a - b = a + \left(-b\right)$$

Subtracting a number is the same as adding its opposite.

Example 1: Write each of the given subtraction problems as an equivalent addition problem using the definition of subtraction.

a.
$$14 - 7 = 14 + (-7)$$

b.
$$9 - (-4) = 9 + [-(-4)] = 9 + 4$$

c.
$$-13-5$$

d.
$$17 - 9$$

e.
$$-15-(-4)$$

f.
$$17 - (-6)$$

2. Subtraction with Negative Numbers: To subtract two numbers, rewrite the expression as "addition of the opposite", and then apply the addition rules.

Example 2: Simplify.

a.
$$-7-5$$

=
$$-7 + (-5)$$
 change subtraction to addition of the opposite
= -12 apply rule for adding

b.
$$-8 - (-5)$$

 $= -8 + [-(-5)]$ change subtraction to addition of the opposite
apply rule $-(-a) = a$
apply rule for adding numbers that have different signs

Example 3: Simplify each of the following.

a.
$$17 - (-10)$$

b.
$$-3-10$$

c.
$$4 - 10$$

Practice Problems:

Rewrite as equivalent addition expressions

b.
$$-13-(-3)$$

c.
$$35 - (-4)$$

Simplify by rewriting as an equivalent addition expression and then applying the addition rules.

d.
$$-15-(-4)$$

e.
$$-18-14$$

f.
$$15 - 32$$

Answers:

a.
$$-14 + (-8)$$

b.
$$-13 + \left[-(-3) \right] = -13 + 3$$

c.
$$35 + \left[-\left(-4 \right) \right] = 35 + 4$$

Note: Portions of this document are excerpted from the textbook *Prealgebra*, 6th ed. by Charles McKeague