3.4 Division with Fractions

1. Rule for Dividing Fractions: If a, b, c and d are integers and neither b, c nor d is zero, then

$$
\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c}
$$

To divide two fractions, multiply the first fraction by the reciprocal of the second.

Example: Divide the given fractions.
a. $\frac{5}{9} \div 10$
b. $(-27) \div\left(\frac{3}{2}\right)$
c. $-\frac{x}{y^{2}} \div \frac{x}{y}$
d. $(-15) \div\left(-\frac{4}{3}\right)$
e. $\frac{18}{25} \div\left(-\frac{6}{35}\right)$

2. Simplifying Fractional Expressions That Contain

 Multiplication, Division and Exponents: Use the order of operations agreement and the rules for adding, subtracting, multiplying and dividing fractions to simplify.Note: Portions of this document are excerpted from the textbook Prealgebra, $7^{\text {th }}$ ed. by Charles McKeague

Example: Simplify each of the following.

a. $\frac{5}{32} \div \frac{15}{16} \bullet \frac{2}{3}$
b. $\frac{10 a^{2}}{3 b} \div \frac{5 a}{6 b} \bullet \frac{1}{2}$
c. $-\frac{28}{125} \div\left(\frac{5 x}{2}\right) \cdot \frac{1}{x}$
d. $\frac{4}{5} \bullet \frac{5}{3} \div\left(-\frac{8}{9}\right)$
e. $24 \div\left(\frac{2}{5}\right)^{2}+25 \div\left(\frac{5}{6}\right)^{2}$
f. $9 \div\left(\frac{3}{5}\right)^{2}+25 \div\left(\frac{5}{7}\right)^{2}$

Note: Portions of this document are excerpted from the textbook Prealgebra, $7^{\text {th }}$ ed. by Charles McKeague

