Section 9.1 Multiplication Properties of Exponents

1. Property One for Exponents: If r and s are any two whole numbers and a is an integer, then it is true that:

$$
a^{r} \cdot a^{s}=a^{r+s}
$$

Example 1: Simplify each of the following.
a. $x^{2} x^{4}$
b. $x^{3} x^{5}$
c. $2 x^{2} \cdot 3 x^{4}$
2. Property Two for Exponents: If r and s are any two whole numbers and a is an integer, then it is true that:

$$
\left(a^{r}\right)^{s}=a^{r s}
$$

Example 2: Simplify each of the following.
a. $\left(x^{3}\right)^{4}$
b. $2\left(x^{3}\right)^{5}$
3. Property Three for Exponents: If r is a whole number and a and b are integers, then it is true that:

$$
(a b)^{r}=a^{r} b^{r}
$$

Example 3: Simplify each of the following.
a. $(2 x)^{3}$
b. $\left(4 x^{5}\right)^{2}$
4. Simplifying Using More Than One Property: Use the order of operations agreement and the three multiplication properties of exponents to simplify.

Example 4: In each of the following identify the property used in each step.
a. $\left(2 x^{2} y^{3}\right)\left(3 x^{5} y^{4}\right)=(2 \cdot 3)\left(x^{2} x^{5}\right)\left(y^{3} y^{4}\right)$

$$
=6 x^{7} y^{7}
$$

b. $\left(3 x^{3} y^{2}\right)^{4}=3^{4} \cdot\left(x^{3}\right)^{4} \cdot\left(y^{2}\right)^{4}$

$$
=81 x^{12} y^{8}
$$

Example 5: Simplify each of the following.
a. $\left(4 x^{3} y^{5}\right)^{2}$
b. $\left(3 x^{2} y\right)^{2}\left(2 x^{3} y^{2}\right)^{3}$

Practice Problems. Use the Multiplication Properties of Exponents to simplify each of the following:
a. $4 x^{3} \cdot 5 x^{5}$
b. $\left(a^{4}\right)^{5}$
c. $(5 x)^{3}$
d. $\left(2 x^{3}\right)^{2}\left(4 x^{5}\right)$
e. $\left(2 x y^{2}\right)\left(5 x^{3} y^{4}\right)$

Answers to Practice Problems
a. $20 x^{8}$; b. x^{20}; c. $125 x^{3}$; d. $16 x^{11}$; e. $10 x^{4} y^{6}$ Note: Portions of this document are excerpted from the textbook Prealgebra, $7^{\text {th }}$ ed. by Charles McKeague

