Chemistry 210 -- EXAM 4 (Fall 2003 - Dr. Robertson)

***** BEFORE BEGINNING EXAM. PLEASE READ THE FOLLOWING *****

The exam consists of this cover sheet, which contains an extra credit problem, which is optional. There are 10 problems to solve. The time limit for this exam is 2 hours. Please read problems carefully so that you understand the entire problem. No work = no credit.

OPTIONAL EXTRA CREDIT (4 points total):

(2 Points) Show (i) the correct reaction mechanism and (ii) correct product for the following reaction (consider this an "allylic" type reaction for correct placement of the Cl atom in the 5-membered ring):

(2 Points) Give the correct names for the following compounds:

2- Fluoro-4-etherlanisole

Chemistry 210

Exam 4 (December 10, 2003)

For reactions, if you need the structure of a reactant, you can ask for it, for a 1 point deduction.

16 1. Show structures for:

2-phenylethanol

p-nitrotoluene

p-aminobenzoic acid

Benzylbromide

isopropylbenzene

m-xylene

phenol

naphthalene

Show the structure of a benzyl free radical. Then, show 3 additional resonance structures derived from this free radical. Show the major product for the free radical chlorination of toluene (which undergoes a free-radical substitution).

4. (i) What is Hückels Rule for aromaticity (3 pts)? (ii) Show structures for: cyclopentadiene, furan, and pyridine (2 pts each). (iii) Which of these compounds is aromatic (3 pts)? (If you need structures, for each structure you need, I will give you the structure for two points.)

8 5. (i) Show how you could produce an acylium ion from acetyl chloride (structure is shown) and AlCl₃ as catalyst (4 pts). (ii) Draw one resonance structure of this ion (2 pts). (iii) Which of these resonance forms is more stable (2 pts)?

16	9.	Show the major product (no reaction mechanism required) for bromination of the following (draw the
		structure of the compound listed first, then attach the bromine ion to the correct carbon):

toluene

Phenol

benzoic acid

Nitrobenzene

aniline

m-xylene

p-aminobenzoic acid

methylbenzoate

10. You want to produce pure, without any side products, octyl benzene. Show how you could use a 5 Friedel-Crafts acylation reaction, followed by catalytic hydrogenation, to produce this product.

R= cccccccg-ce m alcez -> cccccccco

CCCCCCC