# Astronomy Ranking Task: <br> Doppler Shift 

## Exercise \#4

Description: An important line in the absorption spectrum of stars occurs at a wavelength of 656 nm for stars at rest. Imagine that you study five stars (A-E) from Earth and discover that this absorption line is observed at the wavelength shown in the table below for each of the five stars.

| STAR | Observed Wavelength <br> of Absorption line |
| :---: | :---: |
| A | 650 nm |
| B | 663 nm |
| C | 656 nm |
| D | 657 nm |
| E | 646 nm |

A. Ranking instructions: Rank the size of the Doppler shift (from largest to smallest) observed tonight for the light from each star (A - E).

Or, the Doppler shift of the light from the stars would all be the same. $\qquad$ (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
$\qquad$
$\qquad$
$\qquad$
B. Ranking instructions: As observed tonight, rank the speed of the stars ( $\mathrm{A}-\mathrm{E}$ ) from moving fastest toward the Earth, through not moving at all, to moving fastest away from Earth.

## Ranking Order:

Moving fastest toward 1 $\qquad$ 2 $\qquad$ 3 $\qquad$ 4 $\qquad$ 5 $\qquad$ Moving fastest away

Or, all the stars would have the same speed $\qquad$ (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
C. Ranking instructions: Rank the distances of the stars $(\mathrm{A}-\mathrm{E})$ from closest to farthest away from Earth.

## Ranking Order:

Closest to Earth 1 $\qquad$ 2 $\qquad$ 3 $\qquad$ 4 $\qquad$ 5 $\qquad$ Farthest from Earth

Or, there is not enough information to determine distances. $\qquad$ (indicate with a check mark)

Carefully explain your reasoning for ranking this way:

