Astronomy Ranking Task: Kepler's Laws - Orbital Motion

Exercise \#4

Description: The table below provides a partial list of the orbital periods (in years), and orbital distances (in AU) for six planets orbiting a one solar-mass star. The mass of each planet is also provided (in Earth masses).

PLANET	ORBIT DISTANCE (Semi-major axis in AU)	PERIOD (Years)	MASS (Earth Masses)
\mathbf{A}	0.8	20.0	500
\mathbf{B}	3.0		375
\mathbf{C}			100
\mathbf{D}	5.0	2.0	50
\mathbf{E}		3.5	3
F		3.5	

Ranking Instructions: Use the provided information to rank the distance (from farthest to closest) of the planets ($\mathrm{A}-\mathrm{F}$) from the star. Note that it is not necessary, but may be helpful, to complete the table before making your rankings.

Ranking Order: Farthest 1 \qquad 2 \qquad 3 \qquad 4 ___ 5 \qquad 6 \qquad Closest

Or, the orbital distance for each of the planets would all be the same. \qquad (indicate with check mark).

Carefully explain your reasoning for ranking this way:
\qquad
\qquad
\qquad

