Astronomy Ranking Task:

The Solar System

Exercise \#5

Description: The table below shows some orbital and physical data for some of the largest dwarf planets in our solar system. The objects are assigned letters A through D.

		Pluto (A)	Ceres (B)	Sedna (C)	Eris (D)
Year of Discovery		1930	1801	2003	2003+
Semimajor Axis (AU)		39.4817	2.766	526	67.668
Sidereal Period	(Earth days)	90,470	1680	4.4×10^{6}	2.03×10^{5}
	(Earth years)	247.7	4.599	12,059	557
Orbital Eccentricity		0.249	0.080	0.855	0.442
Inclination to Ecliptic (${ }^{\circ}$)		17.14	10.59	11.934	44.19
Equatorial Diameter	(km)	2390	941	1400	2400
	(Earths)	0.187	0.074	0.110	0.188
Mass	(kg)	1.3×10^{22}	9.5×10^{20}	4.0×10^{21}	1.7×10^{22}
	(Earths)	2.2×10^{-3}	1.6×10^{-4}	6.7×10^{-4}	2.8×10^{-3}
Mean Density (kg/m ${ }^{3}$ *		2030	2080	2000	2100
Surface Gravity (Earths)		0.06	0.028	0.04	0.07
Rotational Period	(hours)	152.7	9.04	10.0	25.8 \ddagger
	(sidereal Earth days)	6.388	0.3781	0.42	$1.08 \ddagger$
Axial Tilt (${ }^{\circ}$)		122.5	$4 \ddagger$? ${ }^{\circ}$? ${ }^{\circ}$
Number of Moons		3	0	0	1

*The density of water at standard temperature and pressure ($68^{\circ} \mathrm{F}, 1 \mathrm{~atm}$) is $998.23 \mathrm{~kg} / \mathrm{m}^{3}$.
†Eris was discovered in images from 2003 but not announced until confirmed in 2005.
\ddagger These are rather uncertain due to the difficulty in observing the object.
-Unknown due to the difficulty in observing the object; treat as zero.
A. Ranking instructions: Rank the sizes of the objects.

Ranking Order: Largest 1 \qquad 2 \qquad 3 \qquad 4 \qquad Smallest

Or, the objects are all the same size. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
B. Ranking instructions: Rank the numbers of moons of each of the objects.

Ranking Order: Most 1 \qquad 2 \qquad 3 \qquad 4 \qquad Least

Or, the objects all have the same number of moons. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
C. Ranking instructions: Rank the masses of the objects.

Ranking Order: Largest 1 \qquad 2 \qquad 3 \qquad 4 \qquad Smallest

Or, the objects are all the same mass. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
D. Ranking instructions: Rank the objects according to their average distance from the Sun.

Ranking Order: Closest 1 \qquad 2 \qquad 3 \qquad 4 \qquad Farthest

Or, the objects are all the same average distance from the Sun. \qquad (indicate with a check mark) Carefully explain your reasoning for ranking this way:
E. Ranking instructions: Rank the objects according to the shapes of their orbits.

Or, the objects' orbits all have the same shape. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
F. Ranking instructions: Rank the tilts of the object's orbital planes.

Most \qquad 3 4 \qquad Least
Ranking Order: Inclined 1 2 \qquad Inclined

Or, the orbital inclinations of the objects are all the same. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:
G. Ranking instructions: Rank the rotational periods of the objects.

Ranking Order: Shortest 1 \qquad 2 \qquad 3 \qquad 4 \qquad Longest

Or, the objects all rotate once in the same amount of time. \qquad (indicate with a check mark)

Carefully explain your reasoning for ranking this way:

